4.1 - Structure of	f an Atom			
Protons	Found in the nucleus , mass = 1 , charge = +1 .			
Neutrons	Found in the nucleus , mass = 1 , charge = 0 .			
Electrons	Found on the energy levels , mass = very small , charge = -1 .			
Atom	Overall charge = zero , radius = 1.0 x 10 ⁻¹⁰ m .			
Nucleus	Overall charge = positive , radius = 1.0 x 10 ⁻¹⁴ m (very small compared to whole atom -> 1/10000 the size).			
Electron absorbs/emits EM radiation	Absorbs = moves to higher energy level (further from nucleus). Emits = moves to lower energy level (closer to nucleus).			
4.2 - Atomic Nu	mber, Mass Number and Isotopes			
Atomic number	Number of protons .			
Mass number	Total number of protons and neutrons.			
Isotopes	Atoms of same element, with same number of protons, different numbers of neutrons.			
4.3 - Developme	ent of the Model of the Atom			
Plum Pudding Model	Electron discovered by JJ Thomson -> negative electrons embedded in a ball of positive charge .			
Rutherford's Experiment	Fired positive alpha particles at thin gold foil. Most passed straight through, small number deflected.			
Rutherford's Nuclear Model	Tiny positively charged nucleus -> nearly all mass is concentrated here -> most of atom is empty space.			
Bohr's Nuclear Model	Electrons orbit the nucleus in energy levels at specific distances from the nucleus.			
Chadwick	Discovered neutrons.			
4.4 - Radioactive	e Decay			
Radioactive decay	Random process -> unstable nuclei emit nuclear radiation -> alpha particles, beta particles, gamma rays and neutrons.			
Activity	Number of nuclei that decay per second , measured in becquerels (Bq)			
Count-rate	Number of radiation counts reaching a detector per second , measured in counts per min or counts per s .			
Half-Life	Time it takes for number of nuclei to halve, or time it takes for activity (or count rate) to fall to half its initial level.			

4.5 - Alpha, Beta and Gamma						
Alpha particle	Made up of 2 protons and 2 neutrons (a helium nucleus).					
Alpha properties	Range in air = a few cm , low penetration (absorbed by paper), highly ionising (large and positive charge)					
Beta particle	Electron emitted from nucleus when neutron turns into proton.					
Beta properties	Range in air = a few m , moderate penetration (absorbed by a few mm of aluminium), moderately ionising .					
Gamma ray	EM waves emitted from nucleus -> travel at speed of light.					
Gamma properties	Range in air = infinite, high penetration (absorbed by few cm of lead or few m of concrete), weakly ionising.					
4.6 - Nuclear D	ecay Equations					
Alpha decay equation	Mass number decreases by 4. Atomic number decreases by 2. 4 2He					
Beta decay equation	Mass number does not change. Atomic number increases by 1.					
Gamma Decay Equation	Mass number does not change. Atomic number does not change.					
4.7 - Dangers of Nuclear Radiation						
lonising power	Radiation can knock electrons off atoms, creating positive ions .					
Cell damage	Radiation can ionise atoms in cells -> causes cell damage. Can cause cancer if atoms in DNA are ionised.					
Irradiation	Object/person is exposed to radiation .					
Contamination	Object/person gets radioactive source in or on them.					
Inside Body	Alpha is most dangerous -> absorbed by cells -> highly ionising.					
Outside Body	Gamma and beta most dangerous -> can penetrate body.					
Reducing Risk	Reduce exposure time, increase distance, increase shielding.					
Working with radiation	Use tongs , store in lead boxes , use remote controlled arms , wear a film badge , wear a full body suit , leave the room, stand behind barrier .					

GCSE Science Physics P4 – Atomic Structure