| 4.1 - Structure of | f an Atom | | | | |---|--|--|--|--| | Protons | Found in the nucleus , mass = 1 , charge = +1 . | | | | | Neutrons | Found in the nucleus , mass = 1 , charge = 0 . | | | | | Electrons | Found on the energy levels , mass = very small , charge = -1 . | | | | | Atom | Overall charge = zero , radius = 1.0 x 10 ⁻¹⁰ m . | | | | | Nucleus | Overall charge = positive , radius = 1.0 x 10 ⁻¹⁴ m (very small compared to whole atom -> 1/10000 the size). | | | | | Electron
absorbs/emits
EM radiation | Absorbs = moves to higher energy level (further from nucleus). Emits = moves to lower energy level (closer to nucleus). | | | | | 4.2 - Atomic Nu | mber, Mass Number and Isotopes | | | | | Atomic number | Number of protons . | | | | | Mass number | Total number of protons and neutrons. | | | | | Isotopes | Atoms of same element, with same number of protons, different numbers of neutrons. | | | | | 4.3 - Developme | ent of the Model of the Atom | | | | | Plum Pudding
Model | Electron discovered by JJ Thomson -> negative electrons embedded in a ball of positive charge . | | | | | Rutherford's
Experiment | Fired positive alpha particles at thin gold foil. Most passed straight through, small number deflected. | | | | | Rutherford's
Nuclear Model | Tiny positively charged nucleus -> nearly all mass is concentrated here -> most of atom is empty space. | | | | | Bohr's Nuclear
Model | Electrons orbit the nucleus in energy levels at specific distances from the nucleus. | | | | | Chadwick | Discovered neutrons. | | | | | 4.4 - Radioactive | e Decay | | | | | Radioactive
decay | Random process -> unstable nuclei emit nuclear radiation -> alpha particles, beta particles, gamma rays and neutrons. | | | | | Activity | Number of nuclei that decay per second , measured in becquerels (Bq) | | | | | Count-rate | Number of radiation counts reaching a detector per second , measured in counts per min or counts per s . | | | | | Half-Life | Time it takes for number of nuclei to halve, or time it takes for activity (or count rate) to fall to half its initial level. | | | | | 4.5 - Alpha, Beta and Gamma | | | | | | | |------------------------------------|--|--|--|--|--|--| | Alpha particle | Made up of 2 protons and 2 neutrons (a helium nucleus). | | | | | | | Alpha properties | Range in air = a few cm , low penetration (absorbed by paper), highly ionising (large and positive charge) | | | | | | | Beta particle | Electron emitted from nucleus when neutron turns into proton. | | | | | | | Beta properties | Range in air = a few m , moderate penetration (absorbed by a few mm of aluminium), moderately ionising . | | | | | | | Gamma ray | EM waves emitted from nucleus -> travel at speed of light. | | | | | | | Gamma properties | Range in air = infinite, high penetration (absorbed by few cm of lead or few m of concrete), weakly ionising. | | | | | | | 4.6 - Nuclear D | ecay Equations | | | | | | | Alpha decay equation | Mass number decreases by 4. Atomic number decreases by 2. 4 2He | | | | | | | Beta decay equation | Mass number does not change. Atomic number increases by 1. | | | | | | | Gamma Decay
Equation | Mass number does not change. Atomic number does not change. | | | | | | | 4.7 - Dangers of Nuclear Radiation | | | | | | | | lonising power | Radiation can knock electrons off atoms, creating positive ions . | | | | | | | Cell damage | Radiation can ionise atoms in cells -> causes cell damage. Can cause cancer if atoms in DNA are ionised. | | | | | | | Irradiation | Object/person is exposed to radiation . | | | | | | | Contamination | Object/person gets radioactive source in or on them. | | | | | | | Inside Body | Alpha is most dangerous -> absorbed by cells -> highly ionising. | | | | | | | Outside Body | Gamma and beta most dangerous -> can penetrate body. | | | | | | | Reducing Risk | Reduce exposure time, increase distance, increase shielding. | | | | | | | Working with radiation | Use tongs , store in lead boxes , use remote controlled arms , wear a film badge , wear a full body suit , leave the room, stand behind barrier . | | | | | | ## GCSE Science Physics P4 – Atomic Structure