1 – Scalars and Vector Quantities		
Scalars	Quantities that only have magnitude.	
Scalar examples	Distance, speed, energy, time, mass, temperature.	
Vectors	Quantities that have both direction and magnitude.	
Vector examples	Displacement, velocity, force, acceleration, momentum.	
2 - Forces		
Contact forces	Objects have to be touching , e.g. friction , tension , air resistance , normal contact force .	
Non-contact forces	Objects do not need to be touching , e.g. electrostatic force, magnetic force, gravitational force.	
Resultant force	A single force that gives the same effect as multiple forces acting together on an object.	
Work done by	When a force moves an object -> energy transferred ->	
forces	work is done -> work = force x distance -> W = F x d	
3 - Mass and Weight		
Mass	Measure of the amount of matter -> units = kilograms -> measure with a mass balance .	
Weight	Force due to gravity -> units = Newtons > measure with a Newton meter.	
Relationship	Weight is directly proportional to mass.	
Equation	Weight = mass x gravitational field strength -> W = m x g	
Centre of mass	Point through which an object's weight appears to act.	
4 - Forces and Elasticity		
Deformation	Stretch, compress or bend -> requires more than 1 force.	
Elastic	Object returns to original shape/size when forces removed.	
deformation	All energy transferred to elastic potential store.	
Inelastic	Object does not return to original shape/size when forces	
deformation	removed.	
Hooke's law	Extension of spring is directly proportional to force applied -> up to the limit of proportionality .	
Equation	Force = spring constant x extension -> F = k x e	

5 – Motion	
Speed equation	speed = distance / time -> v = d / t
Distance-time graphs	Gradient = speed Horizontal line = stationary
Acceleration	Rate of change of velocity -> units = m/s ²
Acceleration equations	$a = \frac{\Delta v}{t} \qquad v^2 - u^2 = 2 x a d$
Velocity-time graphs	Gradient = acceleration Horizontal line = constant velocity Area under graph = distance travelled
Terminal velocity	Maximum constant velocity -> forwards force and backwards friction/drag force are balanced.
6 – Newton's Laws of Motion	
1st Law	Balanced forces -> object stationary or constant velocity. Unbalanced forces -> object accelerates in direction of resultant force.
2 nd Law	Force = mass x acceleration -> F = m x a
3 rd Law	Two interacting objects exert equal and opposite forces on each other.
7 – Stopping Distances	
Equation	Stopping distance = thinking distance + braking distance
Thinking distance	Distance moved during reaction time . Increased by vehicle speed and slower reaction times (e.g. alcohol).
Braking distance	Distance moved whilst brakes applied. Increased by vehicle speed, poor road surface, wet/icy weather, worn brakes/tyres
8 – Momentum	
Equation	Momentum = mass x velocity -> p = m x v -> units = kg m/s
Conservation	For an event (e.g. a collision) in a closed system: momentum before = momentum after.

GCSE Science

Physics P5 – Forces