1 – Purity and Formulations		
Element	A substance made up of only one type of atom . (Atoms with the same number of protons).	
Compound	A substance made up of atoms of at least two different elements , chemically joined together.	
Mixture	A substance made from two or more elements or compounds that aren't chemically bonded to each other.	
Pure	A substance that only contains one element or compound throughout. E.g. pure water only contains water molecules.	
Identifying pure substances	A chemically pure substance will melt or boil at a specific temperature . You can test purity by measuring a substances' melting or boiling point. The closer the measured value to the actual melting or boiling point, the purer the sample is.	
Melting points of impure substances	Impurities in a sample will lower the melting point and increase the melting range of the substance. Impurities will increase boiling point.	
Formulations	A useful mixture with a precise purpose made by following a formula . E.g. fuels, cleaning products, paints and medicines.	
2 – Paper chromatography (required practical)		
Chromatography	An analytical method used to separate a mixture of coloured liquids . E.g. inks, paints and food colouring.	
Method	 Take a piece of filter paper and draw on a start line near the bottom using pencil. Add small dots of samples to the start line. Make sure they are spaced well apart. Secure the filter paper in a beaker with a small amount of solvent in (solvent must be below start line). Wait for coloured liquids to rise up the paper, stop before they reach the top. Take it out and leave to dry. 	
Pencil start	The start line must be drawn in pencil as it is insoluble . Pen	
Mobile phase	would travel up the paper with the samples. The phase in which molecules can move . This is the solvent that moves through the paper (carrying the different substances).	

Stationary phase	The phase where moelcules cannot move . This is the paper .	
R _f value	The ratio between the distance travelled by a dissolved substance and the distance travelled by a solvent .	
R _f value calculations	$R_{f} = \frac{disance\ travelled\ by\ substance}{distance\ travelled\ by\ solvent}$ E.g. The solvent moved 110mm from the start line, and the pigment moved 50mm. $R_{f} = \frac{50}{110} \qquad R_{f} = 0.45$	
3 – Identification of common gases		
Chlorine	Chlorine bleaches damp litmus paper, turning it white. (It may turn red first because chlorine solution is acidic.)	
Oxygen	Put a glowing splint inside a test tube containing oxygen. The oxygen will relight the glowing splint.	
Carbon dioxide	Bubble carbon dioxide through limewater (a solution of calcium hydroxide) and the solution will turn cloudy .	
Hydrogen	Hold a lit splint at the end of a test tube containing hydrogen. There will be a ' squeaky pop' .	

GCSE Science

Chemistry C8 – Chemical Analysis