Year 10 Unit 6: 2D Geometry

TRIGONOMETRIC RULES

sine rule	use with non right angled triangles use when the question involves 2 sides and 2 angles	
sine Rule (for an angle)	$\frac{SinA}{a} = \frac{SinB}{b} = \frac{SinC}{c}$	
sine Rule (for a side)	$\frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{SinC}$	
cosine rule	use with non right angled triangles use when the question involves 3 sides and 1 angle	
cosine Rule (for a side)	$a^2 = b^2 + c^2 - 2bcCosA$	
cosine Rule (for an angle)	$CosA = \frac{b^2 + c^2 - a^2}{2bc}$	
area of a triangle (trig)	$Area = \frac{1}{2}abSinC$	

FYAC	T TR	IG VA	ILIES
LAAG		UVA	LULJ

	0 °	30 °	45°	60 °	90 °
sin	0	1	$\sqrt{2}$	$\sqrt{3}$	1
		2	2	2	
cos	1	$\sqrt{3}$	$\sqrt{2}$	1	0
		2	2	2	
tan	0	1	1	$\sqrt{3}$	
		$\sqrt{3}$			

OTHER NON-LINEAR GRAPHS				
sine graph	y = sin(x)	1		
	important points: (0,0), (90,1), (180,0), (270,-1), (360,0)	0 90° 180° 270° 360° -1		
cosine graph	y = cos(x) important points: (0,0), (90,-1), (180,0), (270,1), (360,0)	1 0 90° 180° 270° 360° 1		
tangent graph	<pre>y = tan(x) the graph has asymptotes at x=90° and x=270° important points: (0,0), (180,0), (360,0)</pre>	y 1 0 90° 180° 270° 560° .1		

CONSTRUCTIONS			
construct	to build or make an accurate drawing using a ruler and protractor or compass		
angle bisector	cut an angle exactly in half	X	
perpendicular bisector of a line segment	cut a line exactly in half, making a right angle		
the perpendicular distance from a point to a line	the shortest distance from a point to that line N.B. doesn't always bisect the line	P	

LOCI VOCABULARY			
loci	a locus is a path of points that follow a rule		
equidistant	equal distance		
regions	'more/further than' indicates shading outside the loci 'within/less than' indicates shading inside the loci		

LOCI		
locus of points equidistant from A	a circle with A at the centre radius is the distance given	(×
locus of points equidistant from two points	perpendicular bisector	
locus of points closer to B than A	perpendicular bisector of AB, shade the side closest to B	A
locus of points equidistant from two lines	an angle bisector	
locus of points a set distance from a line	create two semi- circles at either end joined by two parallel lines	D E

Year 10 Unit 6: 2D Geometry

BEARINGS			Links to: ANG	LE RULES
bearing	 a measure of turn relating to the compass always measured from North always measured clockwise always has 3 digits 		angles around a point	add to 360° (as they make a full turn)
compass			angles on a straight line	add to 180°
compass	Never North Eat East W SE Shredded South SW SE		vertically opposite angles	are equal
	Wheat West 's		angles in a triangle	add to 180°
			angles in a quadrilateral	add to 360°
			Links to: ANG	LES IN PARALLEL LINES
VECTORS scalar	a quantity defined only by size		alternate angles	are equal a pair of angles on opposite sides of the transversal, inside the parallel lines
vector	a quantity which has magnitude and direction it defines a movement from one point to another		correspondin g angles	are equal a pair of angles on the same side of the transversal in the same position of the intersection
vector notation	a vector can be written in 3 ways: a or \overrightarrow{AB} or $\begin{pmatrix} x \\ y \end{pmatrix}$		co-interior angles	add to 180° a pair of angles on the same side of the transversal , inside the parallel lines
magnitude	the size of something (the length of a vector)		Links to: TRA	
column vector (in 2D)	the top number (x) moves left (-) or right (+) the bottom number (y) moves up (+) or down (-)		translation	to move a shape the shape does not change size or orientation (congruent) to translate a shape you need a vector in
	e.g. $\binom{3}{2}$ means a movement of 3 right and 2 up			the form $\begin{pmatrix} x \\ y \end{pmatrix}$
parallel vectors	parallel vectors have the same direction parallel vectors are scalar multiples of each other			
collinear vectors	vectors on the same line to prove: show they are parallel and show they share a common point			
resultant vector	the vector that results from adding two or more vectors together			
prove	to show something is always true, in maths, you must use algebra to prove			