YEAR 10 GEOGRAPHY – CYCLE 3 – ENERGY

BOX 1: KEYWORDS		BOX 6: RENEWABLE	STRATAGIES TO INCREASE ENERGY SUPPLY	
energy surplus	more than enough energy (energy security) → uninterrupted/affordable	biomass	wood, crops → burned for electricity or made into biofuels → but this	
energy deficit	not enough energy (energy insecurity) → interrupted/unaffordable		releases greenhouse gases e.g. carbon dioxide	
energy demand	the amount of energy that is needed	wind	electrical energy generated from the wind e.g. wind turbines	
energy supply	the movement of energy to where it is being used	hydroelectric power	HEP → river dammed → water flows through dam to spin turbines	
energy consumption	using energy	tidal	water level changes between high tide and low tide → spins turbines	
energy exploration	searching for/discovering energy resources e.g. areas with oil and gas	geothermal	energy generated by heat stored deep in the Earth e.g. in volcanic areas	
energy exploitation	using energy resources to maximum, for profit → environmental damage	wave	waves used to generate energy → but wave strength varies day to day	
energy conservation	reducing energy consumption → using less energy	solar	solar energy converted into heat or electricity e.g. by solar panels	
sustainable energy	energy that can be used long into future without harming future	BOX 7: NON-RENEWABLE STRATAGIES TO INCREASE ENERGY SUPPLY		
	generations → does not release greenhouse gases	fossil fuels	coal, oil, gas → formed from remains of living organisms → releases	
renewable energy	energy sources which cannot be exhausted/run out e.g. wind power		greenhouse gases when burnt \rightarrow e.g. $CO_2 \rightarrow$ climate change	
non-renewable energy	energy sources which will run out e.g. fossil fuels	nuclear power	nuclear reaction (uranium) → heats water → steam rises → turns	
fossil fuel extraction	removing fossil fuels from the ground e.g. mining or drilling	nacical power	turbines → electricity → no greenhouse gases → but nuclear waste	
BOX 2: GLOBAL DIST	RIBUTION OF ENERGY CONSUMPTION AND SUPPLY	BOX 8: THE EXTRACTION OF NATURAL GAS → ADVANTAGES AND DISADVANTAGES		
global demand	global demand for energy is rising → global consumption rising	advantages of gas	produces less carbon dioxide than coal and oil	
global consumption	HICs → consume more energy (e.g. transport, industry, technology)	©	gas leaks are less environmentally damaging than oil leaks	
global supply	places with more energy resources → high supply → energy security		easily transported by pipelines	
			can be used for both heating and cooking	
	R INCREASING ENERGY CONSUMPTION	disadvantages of gas	 gas is a fossil fuel → releases carbon dioxide → climate change 	
1. economic	economic development \rightarrow energy demand increases \rightarrow high demand in	(S)	 • 'fracking' can be used to release gas → causes water pollution 	
development	HICs and NEEs e.g. agriculture, industry, transport, domestic energy		 gas leaks can cause explosions or fires and gas is toxic to humans 	
2. rising population	more people → more energy needed e.g. population rising fast in Africa		 needs expensive pipeline infrastructure to transport gas 	
3. technology	today more devices to use energy, especially in the home		 political issues can disrupt transportation of gas e.g. Russia 	
	technology has made it easier for fossil fuels to be extracted			
BOX 4: FACTORS AFF	ECTING ENERGY SUPPLY		NARDS A SUSTAINABLE RESOURCE FUTURE	
1. physical factors	geology for coal? climate for solar energy? coastline for tidal power?	reducing carbon	e.g. reducing individual energy use, using more sustainable energy,	
2. cost of exploitation	when cost of extracting energy is low → cheap energy → more demand	footprints	reducing global energy consumption , reducing waste , insulating homes	
3. technology	e.g. new fracking technology (to extract gas), new renewable technology	energy conservation	1. <u>sustainable homes/workplaces by</u> → home insulation and double	
4. political factors	political factors can reduce energy supply		glazing to reduce heat loss, new boilers , solar panels, LED lighting	
	e.g. war in Ukraine → reduced oil and gas imports from Russia		2. <u>sustainable transport by</u> → sharing transport , cycling , electric cars	
BOX 5: IMPACTS OF	ENERGY INSECURITY	demand reduction	public given incentives to use less energy e.g. money for insulation	
1. more exploration	e.g. increased searching for energy resources \rightarrow harm environment \rightarrow	La alta a La a	new laws to ensure new houses and new cars are energy efficient	
of environmentally	oil drilling in Alaska threatens tundra, flooding of land for HEP reduces	technology	new technology is used to increase efficiency of fossil fuels -> reduces	
sensitive areas	biodiversity, rainforest destruction for biofuel causes climate change		carbon emissions e.g. efficient car engines, 'carbon capture and storage'	
2. economic costs	more energy insecurity → energy prices rise	BOX 10: LOCAL RENE	WABLE ENERGY SCHEME IN LIC/NEE → SUSTAINABLE ENERGY	
3. food production	energy insecurity → less energy for food production → food insecurity	case study example	Darbang community, Nepal, Asia (LIC) → Micro Hydro Scheme	
4. industrial output	unreliable energy → power cuts → less manufacturing and job cuts	features of the	 HEP → sustainable, renewable → no greenhouse gases 	
5. conflict	when demands exceeds supply → energy insecurity can cause conflict :	micro hydro scheme	uses powerful Himalayan rivers to generate electricity	
	- e.g. River Nile HEP dam to increase energy for Ethiopia → but possible		cheap/easy to construct and maintain in remote rural areas	
	conflict between Sudan, Egypt, Ethiopia due to reduced water supplies		• energy for 700 homes → powers small factories e.g. noodle factory	
			• energy for 700 homes → powers small factories e.g. noodle factory	

YEAR 10 GEOGRAPHY – CYCLE 3 – ENERGY			
Exam Paper 2 (Challe	enges in the Human Environmen [.]	t) Section C (The Challenge of Res	source Management) Topic (Energy)